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Abstract Video-over-IP applications have recently attracted
a large number of users on the Internet. Traditional client-
server based video streaming solutions incur expensive band-
width provision cost on the server. Peer-to-Peer (P2P) net-
working is a new paradigm to build distributed network ap-
plications. Recently, several P2P streaming systems have been
deployed to provide live and on-demand video streaming
services on the Internet at low server cost. In this paper, we
provide a survey on the existing P2P solutions for live and
on-demand video streaming. Representative P2P streaming
systems, including tree, multi-tree and mesh based systems
are introduced. We describe the challenges and solutions of
providing live and on-demand video streaming in P2P envi-
ronment. Open research issues on P2P video streaming are
also discussed.
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1 Introduction

Video-over-IP applications have recently attracted a large
number of users over the Internet. In year 2006, the num-
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ber of video streams served increased 38.8% to 24.92 bil-
lion even without counting the user generated videos [1].
Youtube [30] alone hosted some45 terabytes of videos and
attracted1.73 billion views by the end of August2006. With
the fast deployment of high speed residential access, such as
Fiber-To-The-Home, video traffic is expected to be the dom-
inating traffic on the Internet in near future.

The basic solution for streaming video over the Inter-
net is the client-server service model. A client sets up a
connection with a video source server and video content is
streamed to the client directly from the server. One variation
of client-server service model is the Content Delivery Net-
work (CDN) based video streaming. In CDN based solution,
the video source server first push video content to a set of
content delivery servers placed strategically at the network
edges. Instead of downloading from the video source server,
a client is normally directed to a nearby content delivery
server to download the video. CDN effectively shortens the
users’ startup delays, reduces the traffic imposed on the net-
work, and serves more users as a whole. Youtube employs
CDN to stream video to end users. The major challenge for
server based video streaming solutions, though, is its scala-
bility. A video session with good quality requires high band-
width. With the current video compression technology, the
streaming rate for a TV quality video is more than400 kilo-
bits-per-second. The bandwidth provision, at video source
servers or in CDNs, must grow proportionally with the client
population. This makes the server based video streaming so-
lutions expensive.

Peer-to-Peer (P2P) networking has recently emerged as
a new paradigm to build distributed network applications.
The basic design philosophy of P2P is to encourage users
to act as both clients and servers, namely as peers. In a
P2P network, a peer not only downloads data from the net-
work, but also uploads the downloaded data to other users
in the network. The uploading bandwidth of end users is ef-
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ficiently utilized to reduce the bandwidth burdens otherwise
placed on the servers. P2P file sharing applications, such as
[4,10], have been widely employed to quickly disseminate
data files on the Internet. More recently, P2P technology has
been employed to provide media streaming services. Several
P2P streaming systems have been deployed to provide on-
demand or live video streaming services over the Internet [6,
32,25,26]. Our recent measurement study [16] of a P2P live
video streaming system shows that, in early 2006, more than
200, 000 simultaneous users watched the live broadcast of
an 4-hour event at bit rates from400 to 800 kpbs. The ag-
gregate required bandwidth reaches100 gigabits/sec, while
Akamai reportedly has roughly300 gigabits/sec bandwidth
in its entire network at the end of year2006.

P2P streaming systems can be broadly classified into
two categories based on the overlay network structure. They
aretree-based andmesh-based. The tree-based systems, such
as ESM [6], have well-organized overlay structures and typi-
cally distribute video by actively pushing data from a peer to
its children peers. One major drawback of tree-based stream-
ing systems is their vulnerability to peer churn. A peer de-
parture will temporarily disrupt video delivery to all peers in
the subtree rooted at the departed peer. In a mesh-based P2P
streaming system, peers are not confined to a static topology.
Instead, the peering relationships are established/terminated
based on the content availability and bandwidth availability
on peers. A peer dynamically connects to a subset of random
peers in the system. Peers periodically exchange informa-
tion about their data availability. Video content is pulledby a
peer from its neighbors who have already obtained the con-
tent. Since multiple neighbors are maintained at any given
moment, mesh-based video streaming systems are highly ro-
bust to peer churns. However, the dynamic peering relation-
ships make the video distribution efficiency unpredictable.
Different data packets may traverse different routes to users.
Consequently, users may suffer from video playback quality
degradation ranging from low video bit rates, long startup
delays, to frequent playback freezes.

In the rest of the article we give a survey on the exist-
ing P2P media streaming systems. The P2P live streaming
systems are described first in Section 2, followed by the
P2P video-on-demand systems in Section 3. You will see
how different design requirements influence the system ar-
chitectures. Within each section, representative systemsare
used as examples to show both tree-based and mesh-based
system architectures. Finally, the paper is concluded with
some open research problems for P2P video streaming in
Section 4.

2 P2P Live Streaming

Video streaming can be classified into two categories: live
and on-demand. In a live streaming session, a live video con-

tent is disseminated to all users in realtime. The video play-
backs on all users are synchronized. To the contrary, video-
on-demand users enjoy the flexibility of watching whatever
video clips whenever they want. The playbacks of the same
video clip on different users are not synchronized. In this
section, we introduce several P2P live streaming systems us-
ing different overlay structures. P2P video-on-demand sys-
tems will be described in Section 3.

2.1 Tree-based Systems

In early days of the Internet, IP level multicast was proposed
as an efficient way to stream audio and video to a group of
users. In an IP multicast session, the video source server is
connected to all users participating in the session by a multi-
cast tree formed by IP routers in the network. Unfortunately,
largely due to the router overhead of managing multicast
groups and the complexity of transport control for multicast
sessions, IP level multicast was never widely deployed in
the Internet. Instead, the multicast function has been imple-
mented recently at application layer. Video servers and users
form an application level overlay networks to distribute video
content.

2.1.1 Single-Tree Streaming

Similar to an IP multicast tree formed by routers at the net-
work level, users participating in a video streaming session
can form a tree at the application layer that is rooted at the
video source server (see Fig. 1). Each user joins the tree at
certain level. It receives the video from its parent peer at the
level above and forward the received video to its children
peers at the level below. Early examples of single-tree based
streaming include Overcast [18] and ESM [6]. Figure 1 il-
lustrates an application layer streaming tree with ten peers.
There are two peers at level1 and receiving video directly
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Fig. 1 Application layer multicast tree for P2P video streaming
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from the server. Four peers at level2 receive video from their
parents at level1, and three of them forward received video
to four peers at the bottom level.

Given a set of peers, there are many possible ways to
construct a streaming tree to connect them up. The major
considerations include the depth of the tree and the fan-out
of the internal nodes. Peers at lower levels of the tree re-
ceive video after peers at upper levels. To reduce the delays
for peers at the bottom level, one would prefer a stream-
ing tree with fewest levels possible. In other words, the tree
topology should fan out as wide as possible at each level.
However, constrained by its uploading bandwidth, a peer on
an internal node can only upload video at the full rate to a
limited number of children peers. The maximum fan-out de-
gree of a peer is bounded by its uploading capacity. In fact,
for the purpose of load balancing and failure resilience, the
actual fan-out degree of a peer is normally set to be below
its maximum degree.

Other than tree construction, another important opera-
tion for tree-based streaming is tree maintenance. Users in
a P2P video streaming session can be very dynamic. A peer
might leave the session at any time either gracefully or un-
expectedly, e.g. machine crashes. After a peer leaves, all its
descendants in the streaming tree get disconnected from the
video source server and cannot receive the video any more.
To minimize the disruption, the streaming tree needs to be
recovered as soon as possible. Figure 2(a) illustrates a peer
churn scenario when one peer close to the source server
leaves. Five peers are disconnected from the video server.
As shown in Figure 2(b), the streaming tree is recovered by
re-assign affected peers to the server and other unaffected
peers.

Tree construction and maintenance can be done in either
a centralized or a distributed fashion. In a centralized solu-
tion, a central server controls the tree construction and re-
covery. When a peer joins the system, it contacts the central
server. Based on the existing topology and the characteris-
tics of the newly joined peer, such as its location and net-
work access, the server decides the position of the new peer
in the tree and notify it which parent peer to connect to. The
central server can detect a peer departure through either a
graceful sign-off signal or some type of time-out based infer-
ence. In both cases, the server recalculates the tree topology
for the remaining peers and instruct them to form the new
topology. For a large streaming system, the central server
might become the performance bottleneck and the single
point of failure. To address this, various distributed algo-
rithms, e.g. [27], have been developed to construct and main-
tain streaming tree in a distributed way. However, it has been
shown that tree-based streaming still cannot recovery fast
enough to handle frequent peer churn.

Another major drawback of the single-tree approach is
that all the leaf nodes don’t contribute their uploading band-

width. Since leaf nodes account for a large portion of peers
in the system, this greatly degrades the peer bandwidth uti-
lization efficiency.

2.1.2 Multi-Tree Streaming

To address the leaf nodes problem, Multi-Tree based ap-
proaches have been proposed [5,21]. In multi-tree stream-
ing, the server divides the stream into multiple sub-streams.
Instead of one streaming tree, multiple sub-trees are con-
structed, one for each sub-stream. Each peer joins all sub-
trees to retrieve sub-streams. Within each sub-tree, the cor-
responding sub-stream flows down level by level from the
source server to all the leaf nodes. A peer has different po-
sitions in different sub-trees. It might be positioned on an
internal node in one subtree and on a leaf node in another
subtree. A peer’s uploading bandwidth will be utilized to
upload a sub-stream whenever it is placed on an internal
node in some sub-tree. To achieve high bandwidth utiliza-
tion, the number of sub-trees in which a peer is placed on an
internal node can be set to be proportional to its uploading
bandwidth.

In a fully balanced multi-tree streaming withm sub-
streams, the node degree of each sub-tree ism. A single peer
is positioned on an internal node in only one sub-tree and
only uploads one sub-stream to itsm children peers in that
sub-tree. In each of the remainingm − 1 sub-trees, the peer
is positioned on a leaf node and downloads a sub-stream
from its parent peer. Figure 3 shows an example of multi-
tree streaming with2 sub-streams and7 peers. The server
partitions the video stream into two sub-streams and push
them to the left and right sub-tree respectively. Peer0, 1 and
2 are internal nodes in the left sub-tree and leaf nodes in the
right sub-tree. Similarly, peer3, 4 and5 are internal nodes
in the right sub-tree and leaf nodes in the left sub-tree. Each
peer has bandwidth of1 and can simultaneously uploads a
sub-stream of rate0.5 to two children peers. Notice that peer
6 is a leaf node in both sub-trees and doesn’t contribute to
video uploading. This is because the server contributes one
unit of bandwidth and only six units of peer uploading band-
width are needed to stream to seven peers.

2.2 Mesh-based Systems

In tree-based systems, a peer has only one parent in a sin-
gle streaming tree and downloads all content of the video
stream (or the sub-stream for the multi-tree case) from that
parent. This design introduces a single point of failure. If
a peer’s parent leaves, the peer, as well as its descendants,
cannot get streaming feed until it connects to another par-
ent. The management of streaming trees is challenging in
face of frequent peer churns. Many recent P2P streaming
systems adoptmesh-based streaming approach [32,24,28,
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Fig. 2 Streaming tree reconstruction after a peer departure
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Fig. 3 Multi-Tree based streaming with two sub-streams and seven peers.

22,31]. In a mesh-based streaming system, there is no static
streaming topology. Peers establish and terminate peering
relationships dynamically. At any given time, a peer main-
tains peering relationship with multiple neighboring peers.
A peer may download/upload video from/to multiple neigh-
bors simultaneously. If a peer’s neighbor leaves, the peer can
still download video content from remaining neighbors. At
the same time, the peer will find new neighbors to keep a
desired level of connectivity. The high peering degree in
Mesh-based streaming systems makes them extremely ro-
bust against peer churn. A recent simulation study [23] sug-
gests that mesh-based systems have superior performance
than tree-based systems. In this section, we briefly describe
several key design components in mesh-based systems.

2.2.1 Mesh Formation and Maintenance

Let’s first look at how peers in the same video session form
and maintain a mesh topology. Similar to P2P file sharing
systems like BitTorrent, a mesh streaming system has a tracker

to keep track of the active peers in the video session. When
a peer joins the streaming session, it will contact the tracker
and report its own information, such as IP address and port
number, etc. Then the tracker will return a peer list that con-
tains the information of a random subset of active peers in
the session. The number of peers on a list ranges from tens
to hundreds. After receiving an initial list of active peers, the
peer will try to make connections to some remote peers on
the list. If a connection request is accepted by a remote peer,
the local peer will add the remote peer into its neighbor list.
After obtaining enough neighbors, the local peer starts to
exchange video content with its neighbors. Figure 4 shows
the above initial setup process. To deal with frequent peer
arrivals and departures, a peer constantly updates its peer
list during the session. A peer can go to the tracker to ask
for a fresh list of active peers. It can also find new peers by
exchanging its peer list with its neighbors through the estab-
lished connections. If a peer leaves the session gracefully, it
will notify the tracker and its neighbors such that its infor-
mation can be removed from their peer lists immediately. To
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Fig. 4 Peer list retrieval from the tracker server.

handle unexpected peer departures, e.g. computer crashes,
peers regularly exchange keep-alive messages. A peer will
remove a remote peer’s information from its list if no keep-
alive message is received within a pre-configured timeout
period.

A peering connection is established based on the mutual
agreement between two peers at both ends. Different sys-
tems have different peering strategies, i. e., how many and
which peers to connect to, when and how often to switch
neighbors, etc. The peering decisions are normally made
based on the following considerations:

– the workload and resource availability on both ends, such
as the current number of connections, uploading and down-
loading bandwidth, CPU and memory usage;

– the quality of the potential connection, including the packet
delay and loss characteristics on the network path be-
tween two peers;

– the content availability, i.e., how likely a remote peer
will have the content needed by the local peer.

Based on those criteria, a peer not only connects to new
neighbors in response to neighbor departures, but also changes
neighbors voluntarily to achieve better streaming performance.

2.2.2 Data Exchange

In tree-based systems, video streams flow from the source to
all peers along the streaming tree. In mesh-based systems,
due to the mesh topology, the concept of video stream be-
comes invalid. The basic data unit in mesh-based systems
is video chunk. The source server divides the video con-
tent into small media chunks, each of which contains me-
dia data for a small time interval, e.g.,0.1 second. Each
chunk has a unique sequence number. A chunk with lower
sequence number contains video with earlier playback time.
Each chunk is then disseminated to all peers through the
mesh. Since chunks may take different paths to reach a peer,
they may arrive at a peer out of order. For continuous play-
back, a peer normally buffers received chunks in memory

and put them back in order before presenting them to its
video media player. Buffered chunks of one peer can be up-
loaded to its neighbors. Depending on the system design,
a peer might keep several minutes worth of video chunks
in the buffer. For live streaming, the sequence numbers of
buffered chunks increases steadily as the video playback
progresses.

There are two major flavors of data exchange designs
in mesh-based systems:push andpull. In a mesh-push sys-
tem, a peer actively pushes a received chunk to its neigh-
bors who have not obtained the chunk yet. In tree-based sys-
tem, a chunk should always be pushed from a peer to all its
children peers in the streaming tree. However, there is no
clearly defined parent-child relationship in mesh-based sys-
tem. A peer might blindly push a chunk to a peer already
having the chunk. It might also happen that two peers push
the same chunk to the same peer. Peer uploading bandwidth
will be wasted in redundant pushes. To address that problem,
chunk push schedules need to be carefully planned between
neighbors. And the schedules need to be reconstructed upon
neighbor arrivals and departures.

One natural way to avoid redundant pushes is to use
pull instead ofpush. In a mesh-pull system, peers exchange
chunk availability usingbuffer maps periodically. A buffer
map contains the sequence numbers of chunks currently avail-
able in a peer’s buffer. After obtaining buffer maps from its
neighbors, a peer can decide a chunk pull schedule that spec-
ifies from which peers to download which chunks. Then it
will send requests to its neighbors to pull missing chunks.
Redundant chunk transmissions can be avoided since a peer
only downloads a missing chunk from only one neighbor.
Frequent buffer map exchanges and pull requests do incur
more signaling overhead and might introduce additional de-
lays in chunk retrieval. In Figure 5, peer3 generates its buffer
map indicating the chunk availability in its buffer. Then it
exchanges its buffer map with peer1 and2. Missing chunks
will be requested and downloaded among all three peers.

3 P2P Video-on-Demand

Video-on-demand service (VoD) allows users to watch any
point of video at any time. Compared with live streaming,
VoD offers more flexibility and convenience to users and
truly realizes the goal ofwatch whatever you want when-
ever you want. VoD has been identified as the key feature to
attract consumers to IPTV service.

In VoD service, although a large number of users may
be watching the same video, they are asynchronous to each
other and different users are watching different portions of
the same video at any given moment. Tree-based P2P system
is originally designed to function as IP multicast at the ap-
plication layer without underlying network layer’s support.
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Fig. 5 Buffer map exchange and data pull among peers.

The users using tree-based overlay is synchronized and re-
ceive the content in the order the server sends it out. This
is fundamentally different from the requirement imposed by
VoD service. How to accommodate asynchronous users us-
ing tree-based P2P system is a challenging design issue.

Mesh-based P2P system is first introduced to distribute
large files and then successfully applied to live streaming.
Typically a large file is divided into many small blocks. The
system throughput and the rate at which the content can be
distributed to users heavily depend on the diversity of con-
tent blocks available at different peers. The order at which
the blocks are received is different from peer to peer and
is very random. The challenges to offer VoD using mesh-
based P2P network is two folds. At the peer-level, the con-
tent blocks have to be received before their playback time.
Ideally, the content blocks should be downloaded in the same
order as in the source file. At the system level, the content
sharing has to be enabled among asynchronous peers and the
overall system throughput has to be high even with the per-
peer downloading constraint. Supporting VoD using mesh-
based P2P is again not straight-forward.

In the following, we present three representative solu-
tions that have been developed in the past to support VoD us-
ing tree-based and mesh-based P2P system. As described in
the previous section, tree-based and mesh-bashed P2P sys-
tems have their own pros and cons. Here we focus on how
to adapt these approaches to providing VoD service.

3.1 Tree-based P2P VoD

Inspired by the patching scheme [17,11] proposed to sup-
port VoD service using native IP multicast, the authors in [14]
designed a scheme that uses tree-base P2P system to support
asynchronous users in VoD service.

Users are grouped into sessions based on their arrival
time. A threshold,T , is pre-defined. The users that arrive
close in time and within the threshold constitute a session.
Together with the server, users belonging to the same ses-
sion form an application-level multicast tree, denoted as the

base tree. The server streams the entire video over the base
tree as in tree-based P2P live streaming. This complete video
stream is denoted as the base stream. When a new client
joins the session, it joins the base tree and retrieves the base
stream from it. Meanwhile, the new client must obtain a
patch - the initial portion of the video that it has missed
(from the start of the session to the time it joined the base
tree). The patch is available at the server as well as other
users who have already cached the patch. Users behave like
peers in the P2P network, and provide the following two
functions:

– Base Stream Forwarding: Users participate in the tree-
based overlay and forwards the received base stream to
its children. The base stream is shared among all users
in the tree.

– Patch Serving: Users cache the initial part of the video
and serve the patch to latecomers.

Fig. 6 illustrates a snapshot of the above solution when a
new user arrives at time 40. It shows two sessions, session
3 and session 4, starting at time 20.0 and 31.0, respectively,
with the threshold equal to 10. Each user is marked with
its arrival time to the system. A solid line with an arrow is
used to represent the parent-child relationship in the base
tree; and a dashed line with an arrow is used to represent the
patch server-client relationship. The server and the clients in
a session form an application-level multicast tree to deliver
the base stream. At time 40, all clients in session 3 have
finished the patch retrieval; while three clients in session4
are still in the process of receiving the patch stream. Note
that users belonging to different sessions do not interact with
each other.

Note that users are synchronous in the base tree. The
asynchronous requirement of VoD is addressed using patch-
ing. In the following, we describe cache-and-relay P2P VoD.
It again employs tree-based approach, however, the asyn-
chronous issue is solved by the content caching at users.
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Fig. 6 A snapshot of the scheme at time 40. Users belonging to the same session form an application-level multicast tree together with the server.
Users in session 3 have finished patch retrieval; while 3 clients in session 4 are still receiving the patch stream from their parent patch servers.

3.2 Cache-and-Relay P2P VoD

To efficiently utilize memory, a streaming server caches a
moving window of video content in the memory so as to
serve a batch of clients whose viewing point falling into
the caching window. This is so-called interval caching tech-
nique [20,8]. Cache-and-relay P2P VoD applies the inter-
val caching idea to solve the asynchronous issue in tree-
based P2P VoD. A peer in a cache-and-relay P2P VoD sys-
tem buffers a moving window of video content around the
point where they are watching. It serves other users whose
viewing point is within the moving window by continuously
forwarding the stream. Although a P2P tree is formed among
peers, their playback points are different and the synchro-
nization issues is successfully addressed.

Fig. 7 illustrates a simple example of cache-and-relay
P2P VoD system. Here users are assumed to watch the video
from the beginning and cache 10 minutes worth of video
data. UserA arrived first at time1. Since there is no other
users in the system, it retrieves the video from the server
directly. Later on, userB and C arrived at time3 and 8,
respectively. Both discover that userA’s buffer still covers
the beginning of the video. They manage to ask userA to
forward the stream from the very beginning. When userF
joined the system at time 50, however, the moving windows
of early arrivals have passed the video beginning. UserF is
forced to retrieve the video from the server directly. As time
goes, latercomers are able to obtain the video from userF
and its descendants.

In this example, the users form two clusters, cluster 1
and cluster 2. A cluster represents a set of users that are able
to share a single stream out of the server. A tree is estab-

lished among the users of the same cluster. For instance, user
A, B, C and three other users form the first cluster. The video
stream is cached and relayed along the path from the source
all the way to the users placed at the bottom of the tree. A
parent user’s moving buffer always covers the child peer’s
playback point.

Interestingly, a cluster in cache-and-relay P2P VoD evolves
over time. For instance, user A was a member of the clus-
ter 1. However it left the cluster after finishing the playback
and forwarding the video to B and C (see Fig. 7(b)). From
now on, no video out of the server is needed for cluster 1
users. In the extreme case, if users arrive close in time, server
only needs to stream the video to the first user. The followers
can form a chain and obtain the service from early arrivals.
Cache-and-Relay approach proves to be a very scalable so-
lution.

In both tree-based and cache-and-relay P2P VoD, the
construction of overlay tree and the handling of peer churn
remain to be key issues. For cache-and-relay based P2P VoD,
it also imposes extra constraints where a user only has lim-
ited number of users who can be its parents, i.e, users can
be a candidate parent only if its caching window cover the
viewing point of child user. A directory service is also re-
quired to facilitate locating candidate parents. The works
in [19,15,7,2,12] addressed various issues arisen in design-
ing cache-and-relay based P2P VoD service. Jin et al. [19]
derived bounds on the network cost of cache-and-relay ap-
proach. Guo et al. [15] studied the workload posed on the
server and showed that the system scales even if the peers
behave no-cooperatively. In [12], the authors further devel-
oped an application-level multicast based directory service
tailored for cache-and-relay P2P VoD. Cui et. al [7] ana-
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Fig. 7 DirectStream system. (a) DirectStream system with two clusters — one headed by client A and the other headed by clientF . (b) Direct-
Stream system after the departure of clientA. No service from the server is required from now on.

lyzed the server bandwidth requirement and network-wide
link bandwidth requirement under both sequential and non-
sequential stream access patterns. Their work shows that
cache-and-relay scheme defeats IP multicast-based VoD scheme
in terms of both server bandwidth consumption and net-
work bandwidth consumption. Finally, Sharma et al. [2] in-
troduced the prefetching technique into cache-and-relay to
overcome the peer churn, and examined its impact on the
server bandwidth requirement.

3.3 Mesh-based P2P VoD

Mesh-based P2P file sharing network achieves fast file down-
loading by swarming. A file is divided into small size data
blocks. The server (typically called seed in the mesh-based
P2P network context) disperses the data blocks to different
users. The users download from its neighboring peers the
blocks that they currently don’t have . To fully utilize users
upload bandwidth and hence achieve highest downloading
throughput possible, the data blocks at different users are
better-off to be different from each other so that there is al-
ways something to exchange. This is so-called the diversity
requirement in mesh-based P2P system.

The diversity improves the systems overall throughput.
However, the effective rate at which users can playback a
video file may not be good. This is obvious since the data
blocks are retrieved in a fairly random order while the video
blocks have to be played in sequential order. Moreover, due
to the asynchronous nature of VoD service, the users are in-
terested in different parts of content at any given moment.
The availability of different content blocks is also skewed
by users behavior. Therefore the challenge of designing a
mesh-based P2P VoD scheme rests on the right balance be-

tween the overall system efficiency and the conformation to
the sequential playback requirement for asynchronous users.

BiToS [29] probably is the first attempt to design a mesh-
based P2P VoD service system and we use it as an example
of mesh-bashed P2P VoD service here. A peer in BiToS has
three components as shown in Fig. 8. The received buffer
stores all the data blocks that have been received so far.
High priority set contains the video blocks that close to their
playback time yet have not been downloaded. The remain-
ing piece set contains the blocks that have not been down-
loaded. The scheme uses a selection process to decide which
block to download. A block in high priority set is down-
loaded with probabilityp while the one in remaining pieces
set is downloaded with probability1−p. By setting the value
of p greater than0.5, the blocks in high priority set are fa-
vored to be downloaded earlier than the ones in the remain-
ing pieces set. Intuitively, the larger value ofp offers better
chance for the blocks to arrive before their playback time,
while smaller value ofp increases the diversity of blocks
and hopefully leads to better overall system efficiency.

Although the scheduling at individual peers in mesh-
based P2P VoD may look similar to the one in mesh-based
P2P live streaming, the difference lies in the fact that in VoD
users are asynchronous and watching different part of video.
In P2P live streaming, peers are interested in the similar part
of video. Whatever data units downloaded at a peer is also
useful to other peers that have not retrieved those data units.
In P2P VoD, if the video is downloaded in the order of play-
back, a newly arrived user can make little contribution be-
cause it doesn’t have the content other earlier arrived users
are looking for. Meanwhile, many earlier arrived users can
serve the content to the new arrival since they have watch
the beginning part of the video. In contrast, as time goes on,
a peer caches more and more data and can serve more peers.
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Fig. 8 BiToS peer structure.

However, the number of peers that can upload content to
this peer decreases since some peers arrived before this peer
may have finished watching and left the system. How to op-
timally allocate the resources across different parts of the
video and how to manage the overlay topology are impor-
tant design questions. The works [13,3] divide the video into
segments with each segment containing a set of blocks. The
segments close to the playback point is given high priority
to download. [3] also employs network coding to improve
the resource utilization efficiency. The works in [9,13] intro-
duce the source server to help out in case the video content
is not available when the playback time is imminent.

4 Conclusions and Open Issues

In this paper, we conducted a survey on the existing P2P
video streaming technology. We described several key P2P
streaming designs, including system topologies, peering con-
nections and data scheduling, that address various challenges
in providing large scale live and on-demand video stream-
ing services on top of the best-effort Internet. Current de-
ployments on the Internet demonstrate that P2P streaming
systems are capable of streaming video to a large user popu-
lation at low server cost and with minimal dedicated infras-
tructure. However, there are several fundamental limitations
of existing P2P video streaming solutions.

First of all, the user Quality of Experience in current
P2P streaming systems are still not comparable to the tra-
ditional TV services provided by cable and satellite broad-
casting companies. Specifically, P2P streaming users nor-
mally experience much longer channel start-up and channel
delays. Video playback starts tens of seconds after a user se-
lects a channel. There are also large playback lags among
peers. Some peers watch frames in a channel minutes be-
hind other peers. Due to the limited peer uploading capac-
ity, most P2P streaming systems only support video rate up
to 400kbps. Consequently, users only receive low resolution
videos. In addition, the video streaming quality is poor and
unstable when the number of peers watching the same pro-

gram is small. This makes it challenging to serve long-tailed
unpopular contents in P2P streaming systems. Those issues
are interesting and challenging research problems that need
to be addressed to make P2P video streaming services a real
competitor for traditional broadcast TV services.

Secondly, the increasing popularity of P2P streaming has
become a serious concern for ISPs. The huge user base and
high traffic volume of P2P streaming systems pose a big
challenge on ISPs’ network capacities. Most current P2P
streaming designs are notISP-Friendly. The peering con-
nections and data exchanges among peers are mostly driven
by content availabilities. After peers obtain some video data
from the source server, they randomly connect to multiple
peers, local and remote, and exchange data between dif-
ferent networks. Unregulated P2P video exchanges signif-
icantly increase the traffic volume on links within and be-
tween ISPs. As a result, the video content distribution cost
is essentially shifted to ISPs without any profit for them.
How ISPs should manage and regulate the ever increasing
P2P video streaming traffic deserves further investigationto
maintain the stability of their network infrastructures.

Lastly, playing the dual role of network service provider
and content service provider, several ISPs have started to
provide IPTV services by deploying IP multicast and video
proxy servers in their private networks. P2P streaming has
been proved to be a scalable streaming solution with low
infrastructure requirement. It will be beneficial for ISPs to
integrate P2P technology into their IPTV systems to signif-
icantly reduce their server and network infrastructure cost.
Many interesting research problems need to be addressed to
develop an integrated IPTV solution for content providers,
network providers and IPTV users.
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